Real numbers will be approximated by numbers rounded to a fixed number of decimal or binary digits.
We will look at these for both our six-digit -EENMMM representation and the double-precision floating-point
representation (double), stored using 8 bytes or 64 bits.

Recall that four bits can be written as a hexadecimal digit, with the following substitutions:

0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111
8 1000 9 1001 a 1010 b 1011 ¢ 11060 d 1101 e 1110 f 1111

For example, 0xece204 in binary is 1110 1100 1110 0010 0000 0100 or 111011001110001000000100. As a
double is stored using 8 bytes, it can be written using sixteen hexadecimal digits. For example, we will see
why 7 is stored as either +493142 or 0x400921fb54442d18.

The sign of a number is stored using an explicit sign in our +EENMMM representation, and as the first bit of
double, where @ represents a positive number and 1 represents a negative number.

1 Scientific notation and normal numbers

In the +£EENMMM representation, each real number is rounded to four decimal digits, while for double, it is
fifty-three bits.

After the number is rounded, it is written in scientific notation, with one digit (decimal or binary) to the
left of the radix point, which is called the leading digit. To ensure that there is a unique representation, we
require that the leading digit is not zero. This is a normal form, and therefore numbers where the stored
value has a non-zero leading digit are called normal numbers.

The digits after the radix point are called either the fractional part or the mantissa. Together, the leading
digit and mantissa are called the significand, because these represent the significant digits. The significand
is multiplied by 10¢ and 2¢, respectively, for an appropriate integer exponent e. Thus, our numbers are in
the format

n.mipmsoms X 10° and 1.b1b2bgb4 o ‘b52 x 2°.

Scientific notation requires that the digit n be non-zero, and the only non-zero bit is 1.
For the =EENMMM representation, the leading digit and three digits of the mantissa are stored in the last four
digits NMMM. Because n.mimsms is in scientific notation, the N cannot be 0. For double, in scientific notation,

we have 1.b1b2b3by - - - 52, so the last 52 bits store the mantissa. We do not store the leading bit 1, because
we assume it is there, and thus, we can store an extra bit of precision in the mantissa.

One of the most common mistakes is to forget that the leading bit 1 is not stored, but implied.

In the +EENMMM representation, two decimal digits are used to store the exponent, while for double, it is
eleven bits, stored immediately after the sign bit. This allows 100 and 2'1 = 2048 possible exponents,
respectively. For double, the sign bit and the exponent constitute 12 bits, and therefore may be read by
looking at the first three hexadecimal digits.

Rather than storing the exponent in tens- and twos-complement, we will add a bias to the exponent, and
then store that number. The bias will be, in both cases, the one subtracted from the maximum number of
exponents divided by two, resulting in 49 and 1023 =0x3ff = 0b@1111111111, respectively.

Consequently, if the exponent is 0, the stored value will be 49 and @x3ff, respectively.

In both cases, the lowest exponent is reserved for de-normalized numbers (including zero) and the largest
exponent is reserved for infinity and not-a-number (or the result of undefined operations).

Thus, the exponents @1 through 98 can store exponents 10748 to 10%°, and the exponents 0x001 through
oxffe = @b11111111110 can store 271922 and 21023,

Therefore, the smallest and largest positive numbers in scientific notation we can store in each representation
are 1.000 x 107® and 9.999 x 10%°, and 1.0 x 271922 and 1.ffffffffff S e x 219 or

1.11111111111111111111211111111111111111111111111111115 x 21023,

respectively, although it is easiest to think of these as numbers in the ranges [107%%,10%0) and [271022 21024)

Examples

1 +491000 0x3ff0000000000000

—1 -491000 0xbff0000000000000
2 +492000 0x4000000000000000
—0.5 -485000 0xbfe0000000000000

Table 1: Examples

The value 1970 would be stored as +521970, and as 1970 in binary is 111101100102, we have that it
equals 1.11101100105 x 2'°. The mantissa is 111011001000000. . .0, and converting each four bits to a
hexadecimal character, we get ec80000000000. Adding a decimal 10 to 3ff yields 409, so 1970 is stored as
409ec80000000000.

On the other hand, 0x406ece@000000000 has an exponent seven higher than @x3ff, so the power is 27. The
mantissa is 111011001110, so the significand is 1.111011001110,, so the number is 1.1110110011105 x 27 or
11110110.011105. The integer component is 246, and the fractional part is i + é + % = 1—76 or 0.4375. Thus,
0x406ece0000000000 stores the value 246.4375.

Finally, 7 ~ 3.14159265358979323846, and rounded to four digits is 3.142 x 10°, so this is stored as +493142.
If we write 7 in binary to 80 bits after the radix point, we have

m ~ 11.00100100001111110110101010001000100001011010001100001000110100110001001100011010>,
and rounded to 53 bits, we have 11.0010010000111111011010101000100010000101101000110002 or
1.1001001000011111101101010100010001000010110100011000 x 2.

Thus, the exponent is 0x3ff plus 1, or 0x400 and ignoring the leading 1, we write each subsequent group of
four bits as a single hexadecimal character: 921fb54442d18, so the representation is 400921fb54442d18.

2 Infinity and not-a-number

Any number larger than 10%° and 2'9%%, respectively, is stored as +oo, which is represented as +990000
and 7ff0000000000000, respectively. Similarly, —oo is represented with -990000 and fff0000000000000,
respectively, where for double, the leading bit is now 1.

These are used to represent any real number too large in magnitude to store in the corresponding represen-
tation.

When a computation is undefined (for example, %, 000 or co —), we represent this with a value called

not-a-number or NaN, and it has the first digit or bit of the mantissa set to 1 when the exponent is the largest
possible, so +991000 and 7ff8000000000000, respectively. Remember that 0x8 is 0b1000.

3 Zero and subnormal numbers

Note, subnormal numbers used to be referred to as denormalized numbers.

If the exponent is 00 or 0x000, respectively, then we will allow the leading digit to be zero, so the number
will not be recorded using scientific notation. In each case, the multiplier is 1047 and 271922, respectively.
Thus, the smallest non-zero number that can be represented is 0.001 x 107%° = 107°3 and

0.0001 x 271022 = 9=52 . 9—1022 _ 9—1074

1022

Of course, if all digits in a subnormal number are zero, then this equals 0.0 x 2~ which equals zero.

One interesting point is that we have signed zeros, because ever real number greater than 5 x 107°4 rounds
up to be represented as +000001, while all real numbers in the interval [0, 10~°4] round down to zero and are
thus represented by +000000. Similarly, -000000 represents all real numbers in the interval [—~107%4,0].
Similarly, while all real numbers greater than 27197 round up to 2717 and are thus represented as
0x0000000000000001, all real numbers in the interval [0,271975] would round down to zero and thus be
represented by 0x0000000000000000. Similarly, all real numbers in the interval [-271975 0] would be repre-
sented by —0 or 9x8000000000000000.

4 Changing sign

To take the absolute value of a double, make the first bit a @. If the format is using hexadecimal digits, the
number is negative if the first digit is 8 through f, and to make such a number positive, subtract 8 from that
first digit.

To multiply a double by —1, flip the first bit, or calculate the exclusive-or of the representation and
0b100000. ..0. If the format is using hexadecimal digits, if the number is less than eight, add 8 to make it
negative, otherwise subtract 8 to make it positive.

5 Comparing two representations

The beauty of both representations here is that if two numbers are positive, we can tell which is largest
simply by looking at the two numbers as if they were positive integers. For example, given +796947, +533271,
+332311, +976241, +847034, +599938, +827005, we can sort these simply by placing them in order as if they
were integers: +332311, +533271, +599938, +796947, +847034, +827005, and +976241. Similarly,

0x3fe97759468dee@8 0x3f98dbe806f65de@ 0x3fb81d838252f0a8 @x3fee331238629281
0x3fe25841e8a9614a 0Ox3feeeda367d96252 0x3fed29923ed54883 0x3fd967402bd818c4

are all positive, and looking at the exponents, they are all between 27 and 1 because the smallest exponent
is @x3f9 which is six less than @x3ff. To sort them, we just sort them as if they were hexadecimal integers:

0x3f98dbe806f65de@ 0x3fb81d838252f0a8 ©0x3fd967402bd818c4 0x3fe25841e8a9614a
0x3fe97759468deed8 0x3fed29923ed54883 0x3fee331238629281 0Ox3feeeda367d96252

The first three are sorted because the first two digits are equal and 9 < b < d < e, the next three are sorted
because the first three digits are equal and 2 < 9 < d < e, and finally the last two are sorted because the
first four digits are equal and 3 < e.

This works because the exponents determine the magnitude, and by using a bias, the exponents are stored
in such a way that smaller most values in the most digits imply smaller values. If two exponents are the
same, then the mantissas determine which of the numbers is smaller.

For example, all +49NMMM (1.000 up to 9.999) are less than +501000 (= 10), and they are also all greater than
489999 (= 0.9999).

6 Arithmetic

Here, we will give some basic examples of floating-point arithmetic using both our +EENMMM and double
representations.

6.1 Adding two numbers with the same sign with the same exponent

When adding two numbers with the same exponent, we simply add the leading digit and mantissa as per
normal. The answer must be written in scientific notation to the required number of digits. For example,
adding +358559 and +354716, we have

8.559 x103°—49
+ 4716 x1035—%9
13.275 x10%°—%

and rounded to four digits (raising the odd 7 because all subsequent digits are 500---) and shifting the
decimal point, we get 1.328 x 10(35+1)=49 5 we store +361328. You’ll notice we didn’t even have to calculate
the actual exponent of the solution, which would be 1.328 x 10713,

As another example, when adding 0x38e5f0...0 and 0x38ea20...0, we have

1.01011111 x20x38e-0x3ff
4+ 1.10100010 x20x38e-0x3ff
11.00000001 x20x38e—0x3FF

and given that this is significantly below 53 bits, we don’t need to round, but to write it in scientific notation,
we must shift the radix point to get 1.100000001 x 2(0x38e+1)-0x3ff Recalling that we do not store the
leading 1, we break the mantissa into groups of four bits starting from the radix point, 1000 0000 1000 ...

to see that the result is now 0x38f8080. . .0.

You can test this in MATLABas follows:

format long
a = hex2num('38e5f') % Matlab assumes all remaining hexadecimal digits are @

a = 1.320315254843593e-34

o
1

hex2num('38ea2')

b = 1.572341243659892e-34
c=a+hb

c = 2.892656498503485e-34
format hex

C

c = 38f8080000000000

Test yourself by adding 0x5e3710...0 and @x5e3ed@. . .0, and check your answer in MATLAB.

6.2 Adding two numbers with the same sign with nearby exponents

When adding two numbers with different but nearby exponents, we must first get the same multiplier before
we add. Again, the answer must be written in scientific notation to the required number of digits. For
example, adding +579453 and +593148, we have

9.453 x105719
+ 3.148 x10%9%°

To get the same exponent, we add two to the first exponent, meaning we must shift the decimal point two
to the left (for example, 3.5 x 103 = 0.035 x 10°):

0.09453 x1059—49
+ 3.148 x10%9-49
3.24253 x10°9 %

and rounded to four digits (raising the 2 because the next digit is 5 but not 500 - -), we store +593243. You'll
notice we didn’t even have to calculate the actual exponent of the solution, which would be 3.243 x 10'°.

As another example, when adding 0x5a6e70...0 and 0x5a2830...0, we have

1.11100111 x20x5a67®x3ff
1+ 1.10000011 x20x5a2-0x3ff

We observe that the exponents differ by 4, and so to get a common multiplier, we add 4 to the second
exponent and move the radix point to the left by four:

111100111 x20x5a6-0x3ff
+ 0.000110000011 x20x5a2+4-0x3ff
1111111110011 x20x5a6-0x3FF
and given that this is significantly below 53 bits, we don’t need to round. Recalling that we do not store the

leading 1, we break the mantissa into groups of four bits starting from the radix point, 1111 1111 0011 to
see that the result is now 0x5a6ff30...0.

- MATLAB .

You can test this in MATLABas follows:

format long
a = hex2num('5a6e7') % Matlab assumes all remaining hexadecimal digits are @

a = 4.120758487050894e+127

b = hex2num('5a283')

b = 2.046629279374610e+126
c=a+hb

c = 4.325421414988355e+127
format hex

C

c = 5a6ff30000000000

. .

Test yourself by adding 0x5e3710...0 and @x5e3ed@. . .0, and check your answer in MATLAB.

6.3 Adding two numbers with the significantly different exponents

When adding two numbers with significantly exponents, we get into the situation where x + y = x even
though y is not zero when |z| > |y| (much greater). For our +EENMMM representation, the numbers are
sufficiently different if the exponents differ by 5 or more. For example, adding +873215 and +793104, we see
that the difference in the exponents is 8 > 5, so the result is the larger of the two numbers in absolute value,
which is the first: +873215.

For double, this difference in exponent is 54, so for example, when adding 0x2482040. . .0 and @xb5feced. . .0,
we first note the second number is negative, so its absolute value is @x35fece@...0. We next note the
difference in exponents is greater than 0x100, and 162 > 102 > 54, so the result must be the larger of the
two original numbers in absolute value: @xb5fece0. . .0.

MATLAB

You can test this in MATLABas follows:

format long
a = hex2num('248204') % Matlab assumes all remaining hexadecimal digits are @

a = 7.931608219673450e-133

b = hex2num('b5fece')

b = -1.317338906486691e-48
c=a+hb

c = -1.317338906486691e-48
format hex

©

c = b5fece0000000000

\. J

Test yourself by adding 0xaf1f320...0 and 0xe2131e0.. .0, and check your answer in MATLAB.

You would never be tested on an example where the difference between the two exponents is close to
54: either the difference will be small (no more than 9) or obviously larger than 54.

6.4 Adding a larger positive number onto a smaller negative number

As xz + (—y) = =z — y, adding a smaller negative number onto a larger positive number can be calculated the
same way that you learned subtraction in elementary school. For example, adding +237532 and -219548, we

have
7.532 x10%349

— 9548 x10%21—49
To get the same exponent, we add two to the second exponent, meaning we must shift the decimal point
two to the left:

7.532 x10%3-49
— 0.09548 x10%3—%9
7.43652 x10%-%

and rounded to four digits (raising the 6 because the next digit is 5 but not 500 - - -), we store +237437. You'll
notice we didn’t even have to calculate the actual exponent of the solution, which would be 7.437 x 10712,

As another example, when adding 0x2e7530...0 and 0xae4f1...0, we note the second number is negative,
so its absolute value can be found by subtracting 8 from the first hexadecimal digit to get 0x2e4f1...0, so
we are calculating:
1.01010011 x20x2e7-0x3ff
— 111110001 x20x2e4-0x3ff

We observe that the exponents differ by 3, and so to get a common multiplier, we add 3 to the second
exponent and move the radix point to the left by three:

1.01010011 X20x2e770x3’r'f
— 0.00111110001 x20x2e4+3-0x3ff
1.00010100111 x20X2€7-0x3fF

Recalling that we do not store the leading 1, we break the mantissa into groups of four bits starting from
the radix point, 0001 0100 1110 to see that the result is now 0x2e714e0. . .0.

If you missed what happened with the subtraction, recall that with subtraction, if the digit being subtracted
is larger than the digit being subtracted from, then you must borrow from the digit to the left. If that is
zero, you must first borrow from the next digit, and so on. For binary, however, when you borrow, the 10 is
actually 2, so 2 — 1 =1, and when you borrow from 10, you get 1, again, because it is base 2.

MATLAB

You can test this in MATLABas follows:

format long
a = hex2num('2e753') % Matlab assumes all remaining hexadecimal digits are @

a = 4.120758487050894e+127

b = hex2num('ae4f1')

b = 2.046629279374610e+126
c=a+hb

c = 4.325421414988355e+127
format hex
c

c = 5a6ff30000000000

Test yourself by adding 0x5e3710...0 and 0xde2ed. . .9, and check your answer in MATLAB.

6.5 Adding a smaller positive number onto a larger negative number

As x + (—y) = =z — y, adding a larger negative number onto a smaller positive number can be calculated the
same way that you learned subtraction in elementary school. However, if you need to calculate z — y when
y > x, you used the rule that —(x —y) = y — x, so you calculated y — x and negated the result. For example,
adding +842354 and -879326, we have

2.354 x1034—49
— 9.326 x10%7%9

To get the same exponent, we add three to the first exponent, meaning we must shift the decimal point three

to the left:
0.002354 x10%7—49

— 9.326 x 103749

The first number is smaller in absolute value, so instead, we will calculate:

9.326 x 103749
— 0.002354 x 108749
9.323646 x 10571

and rounded to four digits (raising the 3 because the next digit is a 6), we store -879324. You'll notice we
didn’t even have to calculate the actual exponent of the solution, which would be 9.324 x 1038.

As another example, when adding 0x953090...0 and 0x14fe8.. .0, we note the first number is negative, so
its absolute value can be found by subtracting 8 from the first hexadecimal digit to get 0x153090. . .0, so we
subtracting the first number from the second:

1.11101000 x20x14f-0x3ff
— 1.00001001 x20x153-0x3ff

We observe that the exponents differ by 4 (0x14f + 1 = 0x150, @x14f + 2 = @x151, etc.), and so to get a
common multiplier, we add 4 to the first exponent and move the radix point to the left by four:

0.000111101000 x20x14f+4-0x3ff
- 1.00001001 x20x153-0x3ff

We see now that we are subtracting a larger number from a smaller number, so instead of calculating x — y,
we will calculate y — x and then negate the result:

1.00001001 x20x153-0x3ff
— 0.000111101000 x20x14f+4-0x3ff
0.111010101 x20XT53-0x3fF

First we must write this in scientific notation, so we must move the radix point one to the right, so we
subtract 1 from the exponent to get 1.11010101 x 9(0x153-1)-0x3ff Now, the exponent is 0x152, and
recalling we do not store the leading 1, we break the mantissa into groups of four bits starting from the radix
point, 1101 @101 to see that the result is now 0x152d5. . .0, but we must negate this, so we add 8 to the first
digit to get 0x952d5. . .0.

- MATLAB .

You can test this in MATLABas follows:

format long
a = hex2num('95309') % Matlab assumes all remaining hexadecimal digits are @

a = -1.289700518574636e-206

10

o
1

hex2num('14fe8')

b = 1.484372294963261e-207
c=a+hb

c = -1.141263289078310e-206
format hex

©

c = 952d500000000000

Test yourself by adding 0x313a30...0 and 0xb15210...0, and check your answer in MATLAB. Also, try
adding these two pairs of numbers: 0x3ff320...0 and 0xbff4a0...0; and 0x3fff90...0 and @xbff7de...0.

11

To create your own examples for addition, choose two random integers with values between 128 and
256. Then, multiply the first by 2™ where n is any value between —500 and 500, and then multiply
the second by 2"t* where k is a value between —5 and 5.

format hex

a = 123; % The ';' suppresses the output
b = 214;

a = a*x2"-57;

b = bx2"-54;

a

a = 3ccecl0000000000

-a

ans = bccec00000000000
b

b = 3d0ac00000000000
-b

ans = bd0ac00000000000
athbh

ans = 3d0cac0000000000
a + (-b)

ans = bd08d40000000000

(ca) + (-b) % =-(a + b)

ans = bd@cac0000000000

(-a) + b %= -(a+ (b))

ans = 3d08d40000000000

12

6.6 Multiplying two numbers with small exponents

First, we check the signs of both z and y, and if they are both either positive or both negative, the result
will be positive; otherwise, the result will be negative.

Next, we will calculate |z||y|, where we will multiply the two significands and add the exponents, perhaps
shifting the exponent to get the result in scientific notation.

For example, multiplying +523240 and -487610, first, only one is negative, so the product will be negative.
Next, we are calculating (3.240 x 10%) x (7.610 x 10~1), so the result will be multiplied by 10>+(-1) = 102.
Next, performing the multiplication, we have

3.240
X7.610
32400
1944000
+22680000

24656400

and counting the digits after the decimal point, we get that the answer is 24.656400 x 102. We round the
answer to four digits, and to get the result into scientific notation, we move the radix point one the left, and
therefore add one to the exponent: 2.466 x 103, so our answer is -522466.

Any question asking you to multiply two doubles will have exponents that are close to 0, so between
—10 and 10, so you may see exponents between 3f5 and 409 or, if they are negative numbers, between
bf5 and c@9.

As another example, when multiply 0xc@390...0 and @xbfdbo. . .0, we note both numbers are negative, so
the result will be positive. Next, we note that the two exponents are 24 and 272, so we will multiply the
product of the significands by 24T(=2) = 22. Next, we multiply the significands:

1.1001
x1.1011
11001
110010
11001000
-+110010000
1010100011

Counting the digits to the right of the radix point, we get the result is 10.10100011 x 102 and to convert
this into scientific notation, we move the radix point one the left and add one to the exponent to get
1.010100011 x 103. The exponent is 0x3ff + 3 = 0x402. Recalling we do not store the leading 1, we break
the mantissa into groups of four bits starting from the radix point, 8101 0001 1000 to see that the result is
now 0x4025180...0.

- MATLAB .

You can test this in MATLABas follows:

format long
a = hex2num('c@39') % Matlab assumes all remaining hexadecimal digits are @

a = -25

b = hex2num('bfdb')

13

b = -0.421875

c = a*b

c = 10.546875
format hex
c

C = 4025180000000000

Test yourself by adding 0xbfe2890...0 and 0xbfd340...0, and check your answer in MATLAB.

To create your own examples for multiplication, choose two random integers with values between 16
and 31. Then, multiply each by a power of two where the power falls between —14 and 4.

format hex

a = 23; % The ';' suppresses the output
b =19;

a = ax2"3;

b = b%x2"-7;

a

a = 4067000000000000

—-a

ans = c067000000000000
b

b = 3fc3000000000000
-b

ans = bfc3000000000000
axb % = (-a)*(-b)

ans = 403b500000000000

ax(-b) % = (-a)*b = -(axb)

ans = c03b500000000000

14

7 Acknowledgements

Aviral Gupta, who noted the exponent of 1970 was not correctly calculated for the hexadecimal representa-
tion.

15

	Scientific notation and normal numbers
	Infinity and not-a-number
	Zero and subnormal numbers
	Changing sign
	Comparing two representations
	Arithmetic
	Adding two numbers with the same sign with the same exponent
	Adding two numbers with the same sign with nearby exponents
	Adding two numbers with the significantly different exponents
	Adding a larger positive number onto a smaller negative number
	Adding a smaller positive number onto a larger negative number
	Multiplying two numbers with small exponents

	Acknowledgements

